Edinburgh International Conference of Medicine

Past, Present & Future

#PPFEd16
www.pastpresentfuture2016.org
Non-alcoholic fatty liver disease; a new epidemic?

Professor Chris Day
Newcastle University
Definition

NAFL
- Fat infiltration >5% with or without mild inflammation

NASH
- Steatosis and hepatocyte ballooning and inflammation (with or without fibrosis)

Cirrhosis

Importance
Prevalence of NAFLD in the general population (imaging based)

<table>
<thead>
<tr>
<th>Region</th>
<th>N</th>
<th>Prevalence</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>2</td>
<td>13</td>
<td>6-29</td>
</tr>
<tr>
<td>Asia</td>
<td>14</td>
<td>27</td>
<td>23-32</td>
</tr>
<tr>
<td>Europe</td>
<td>11</td>
<td>24</td>
<td>16-33</td>
</tr>
<tr>
<td>Middle East</td>
<td>3</td>
<td>32</td>
<td>13-58</td>
</tr>
<tr>
<td>North America</td>
<td>13</td>
<td>24</td>
<td>20-29</td>
</tr>
<tr>
<td>South America</td>
<td>2</td>
<td>30</td>
<td>23-39</td>
</tr>
<tr>
<td>Overall</td>
<td>45</td>
<td>25</td>
<td>22-29</td>
</tr>
</tbody>
</table>
Risk factors for NAFLD

- Hypertension
- Hyperlipidemia
- Metabolic Syndrome
- Diabetes
- Obesity

Bar chart showing the percentage of risk factors for NAFLD, with categories for Normal, Hypertension (Hyperten), Hyperlipidemia (H’lipidemia), Metabolic Syndrome (Met S’drome), Diabetes, and Obesity. The chart indicates a higher percentage of NASH (Non-Alcoholic Steatohepatitis) and Fibrosis in individuals with Obesity.
NASH Is the Second Leading Etiology of Liver Disease Among Adults Awaiting Liver Transplantation in the United States
Presentation

• Symptoms
 – Unusual: ~ 60% asymptomatic
 – Majority discovered by chance
 – Fatigue most common

• Most common “presentation”
 – Incidental abnormal liver blood tests
 – Incidental hepatomegaly
 – Incidental “bright liver” on imaging

• Common scenarios
 – “Statin” monitoring
 – “Annual reviews” in Diabetic/Lipid clinics
 – Medical insurance/occupational health checks
Liver blood tests & NAFLD

• NAFLD is the commonest diagnosis in patients with “incidental” abnormal LFTs (ALT/ALP/GGT)
 – In secondary care (60-70%)
 Skelly 2001, Pendino 2005
 – In primary care (26%)
 Armstrong 2012

• BUT:

• Most patients with NAFLD by MRS (~80-90%) have normal LFTs
 Browning 2004, Wong 2013

• ⇒ Screening/case finding in high risk groups (T2DM, Met S)?
 – Not advised in AASLD Practice Guidelines
 Chalasani 2012
 – Not advised in NICE Guidelines 2016
 – Advised in EASL Practice Guidelines
 Marchesini et al 2016
 – With what?
Tests for predicting steatosis (>5%)

<table>
<thead>
<tr>
<th>Test</th>
<th>Authors</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty Liver Index (FLI)</td>
<td>Borman 2013, Fedchuck 2014</td>
<td>0.81 0.76</td>
<td>0.49 0.87</td>
</tr>
<tr>
<td>Steatotest</td>
<td>Lassailly 2011</td>
<td>0.87</td>
<td>0.50</td>
</tr>
<tr>
<td>NAFLD-LFS</td>
<td>Fedchuck 2014</td>
<td>0.65</td>
<td>0.87</td>
</tr>
<tr>
<td>MRS</td>
<td>Wu 2014</td>
<td>0.85</td>
<td>0.94</td>
</tr>
<tr>
<td>MRI-PDFF</td>
<td>Kuhn 2012, Imajo, Gastro in press</td>
<td>0.86 0.90</td>
<td>1.00 0.93</td>
</tr>
<tr>
<td>CAP</td>
<td>Shen 2014</td>
<td>0.82</td>
<td>0.80</td>
</tr>
<tr>
<td>USS</td>
<td>Jun 2014</td>
<td>0.73</td>
<td>0.85</td>
</tr>
</tbody>
</table>

- For primary care (and case-finding) Fatty Liver Index (fTG, BMI, GGT, Waist Circ) looks most promising - imaging either impractical and/or too expensive.
- For secondary (hospital/clinic) care USS remains the most commonly used test although MRI-PDFF is the most accurate.
Natural history
Fibrosis Stage Is the Strongest Predictor for Disease-Specific Mortality in NAFLD After Up to 33 Years of Follow-Up

Mattias Ekstedt, Hannes Hagström, Patrik Nasr, Mats Fredrikson, Per Stål, Stergios Kechagias, and Rolf Hultcrantz

Total number of deaths

Number at risk
NAS<5 & Fibrosis<3 76
NAS>4 & Fibrosis<3 57
Controls 2286

Log-rank test: p=0.17

Hepatology 2015
Fibrosis Stage Is the Strongest Predictor for Disease-Specific Mortality in NAFLD After Up to 33 Years of Follow-Up

Mattias Ekstedt,1 Hannes Hagström,2 Patrik Nasr,3 Mats Fredrikson,3 Per Stål,2 Stergios Kechagias,3 and Rolf Hulicrantz2

Total number of deaths

Log-rank test: p<0.001

Number at risk

<table>
<thead>
<tr>
<th></th>
<th>Controls 2286</th>
<th>Fibrosis<3 198</th>
<th>Fibrosis>2 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>0 2085</td>
<td>184</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>10 1818</td>
<td>156</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>20 387</td>
<td>28</td>
<td>0</td>
</tr>
</tbody>
</table>

#PPFEd16
Hepatology 2015
www.pastpresentfuture2016.org
NAFLD is now the commonest cause of HCC in the North East UK and is increasing worldwide

Similar data reported from the US: 9% annual increase in NAFLD-HCC cases (2004-9)

Younossi et al 2015

Dyson et al J Hep 2014
Diagnosis/staging: 2016

- Case finding in those with T2DM and/or MetS *probably* sensible (but ? cost effective)
- FLI (TG, BMI, GGT, WC) probably more cost-effective/practical than USS
- For staging fibrosis:
 - AST/ALT ratio <0.8, Fibroscan <10, NAFLD score < -1.455, ELF test < 10.51 excludes advanced fibrosis: NPV >90%
 - Of these only ELF > 10.51 has PPV >
- ELF recommended in NICE Guidelines 2016
Treatment
Therapies directed at Obesity/Metabolic Syndrome with potential “liver effects”

- Lifestyle changes directed at obesity and physical fitness
- Bariatric Surgery
- Insulin sensitizers/GLP-1 agonists
- Lipid lowering agents
Lifestyle changes: current status

• Weight reduction by lifestyle modification with diet *and* exercise should be recommended because it:
 – Improves cardiovascular risk profile
 – Improves steatosis *Sullivan 2012, Wong 2013*
 – *Probably* ↓ inflammation and fibrosis *Vilar-Gomez 2015*
• Improves QoL *Tapper 2016*
• Mediterranean diet may be best *Ryan 2013*
• Resistance = aerobic exercise *Hallsworth 2011, Bacchi 2013*
Bariatric Surgery

- Histological effects:
 - Improves steatosis: 92% [82-98%]
 - Improves steatohepatitis: 81% [62-95%]
 - Probably improves fibrosis (~ 35% at 1 year)

- NOT yet recommended as 1° treatment for NASH but NASH not a contraindication to Sx in an otherwise eligible patient

 AASLD Guidelines 2012
Drugs for Diabetes

• Metformin
 – Pilot data contradictory and recent RCT -ve
 – But: recent evidence of anti-HCC effect in diabetics + survival benefit in NASH cirrhosis Zhang 2012 & 2014

• Glitazones
 – Large RCT – “PIVENS” (in non diabetics) negative for fibrosis but ↓NASH Sanyal 2010
 – Pioglitazone and bladder cancer risk Tuccori 2016

• GLP-1 agonists – Liraglutide
 – ↓NASH and fibrosis Armstrong 2016
Pooled estimate of the odds ratio and 95% confidence interval of hepatocellular carcinoma associated with metformin therapy among 105,495 patients with type 2 diabetes.

Zhang et al JCEM 2012
Liraglutide

<table>
<thead>
<tr>
<th></th>
<th>Liraglutide</th>
<th>Placebo</th>
<th>Relative risks or mean changes (95% CI) from baseline to 48 weeks (liraglutide vs placebo)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients with paired liver biopsies</td>
<td>23</td>
<td>22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patients with resolution of non-alcoholic steatohepatitis</td>
<td>9 (39%)</td>
<td>2 (9%)</td>
<td>4.3 (1.0 to 17.7)</td>
<td>0.019</td>
</tr>
<tr>
<td>Changes from baseline in histopathological parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total NAFLD activity score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in score</td>
<td>-1.3 (1.6)</td>
<td>-0.8 (1.2)</td>
<td>-0.5 (-1.3 to 0.3)</td>
<td>0.24</td>
</tr>
<tr>
<td>Patients with improvement</td>
<td>17 (74%)</td>
<td>14 (64%)</td>
<td>1.2 (0.8 to 1.7)</td>
<td>0.46</td>
</tr>
<tr>
<td>Hepatocyte ballooning score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean change</td>
<td>-0.5 (0.7)</td>
<td>-0.2 (0.6)</td>
<td>-0.3 (-0.7 to 0.1)</td>
<td>0.15</td>
</tr>
<tr>
<td>Patients with improvement</td>
<td>14 (61%)</td>
<td>7 (32%)</td>
<td>1.9 (1.0 to 3.8)</td>
<td>0.05</td>
</tr>
<tr>
<td>Steatosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in score</td>
<td>-0.7 (0.8)</td>
<td>-0.4 (0.8)</td>
<td>-0.2 (-0.6 to 0.2)</td>
<td>0.32</td>
</tr>
<tr>
<td>Patients with improvement</td>
<td>19 (83%)</td>
<td>10 (45%)</td>
<td>1.8 (1.1 to 3.0)</td>
<td>0.009</td>
</tr>
<tr>
<td>Lobular inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in score</td>
<td>-0.2 (0.6)</td>
<td>-0.2 (0.5)</td>
<td>-0.01 (-0.3 to 0.3)</td>
<td>0.97</td>
</tr>
<tr>
<td>Patients with improvement</td>
<td>11 (48%)</td>
<td>12 (55%)</td>
<td>0.9 (0.5 to 1.6)</td>
<td>0.65</td>
</tr>
<tr>
<td>Kleiner fibrosis stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in score</td>
<td>-0.2 (0.8)</td>
<td>0.2 (1.0)</td>
<td>-0.4 (-0.8 to 0.0)</td>
<td>0.11</td>
</tr>
<tr>
<td>Patients with improvement</td>
<td>6 (26%)</td>
<td>3 (14%)</td>
<td>1.9 (0.5 to 6.7)</td>
<td>0.45</td>
</tr>
<tr>
<td>Patients with worsening</td>
<td>2 (9%)</td>
<td>8 (35%)</td>
<td>0.2 (0.1 to 1.0)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Armstrong et al 2016

#PPFEd16

www.pastpresentfuture2016.org
Lipid lowering agents

• **Fibrates:**
 – good theory - PPARα agonists
 – No benefit in two RCTs

• **Statins**
 – Definitely **safe** in NAFLD patients
 – May protect vs *all stages* of NAFLD *Dongiovanni 2015*
 – May also ↓ HCC risk (OR: 0.63 [0.5-0.8]) *El-Serag 2009, Singh 2013*

• **Omega-3 PUFAs**
 – Large negative RCT with 2 doses of EPA *Sanyal 2014*
Statins and HCC

Singh et al. Gastroenterology 2013
Tested “Liver-directed” therapies

- Antioxidants:
 - Vitamin E: histological benefit in 2 RCTs “PIVENS” and “TONIC”
 - Sanyal 2010, Lavine 2011
- FXR agonists
 - Neuschwander-Tetri 2014
- Dual PPARα/δ agonist (Elafibrinor)
 - Ratziu 2016
- Urso:
 - Neither 13-15 mg/kg nor 23-28 mg/kg/day any benefit in two large RCTs
 - Lindor 2004, Leuschner 2010
- Probiotics
 - Reduced TAG (by MRS) and fibrosis (by TE)
 - Wong 2013, Elamparast 2014
Vitamin E: panacea for NASH?

- PIVENS & TONIC indicate that Vitamin E may be effective in some patients

- BUT need for caution:
 - Increased all cause mortality risk at >400 IU/day

 Miller 2005, Bjelakovic 2007
 - Increased haemorrhagic stroke risk (although reduced embolic stroke risk)

 Schwarts, 2010
 - Increased prostate carcinoma risk

 Lippman 2009, Klein 2011
Obeticholic Acid for NASH RCT
The FLINT study *Lancet* 2014

- Multicentre, double blind RCT
- Non-cirrhotic NASH
- 25 mg obeticholic acid/placebo 72 weeks
- Stratified by Centre /presence of diabetes
- Primary endpoint = 2 point improvement in NAS with no worsening of fibrosis
- Interim analysis after 219/283 patients had 72 week biopsy recommended stopping trial early
Histological data

<table>
<thead>
<tr>
<th>Feature</th>
<th>OCA</th>
<th>Placebo</th>
<th>Relative Risk</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>110</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pts with improvement</td>
<td>50(45%)</td>
<td>23(21%)</td>
<td>1.9 (1.3-2.8)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Pts with improvement in Fibrosis</td>
<td>36(35%)</td>
<td>19(19%)</td>
<td>1.8(1.1-2.7)</td>
<td>0.004</td>
</tr>
<tr>
<td>Pts with improvement in Ballooning</td>
<td>47(46%)</td>
<td>30(31%)</td>
<td>1.5(1.0-2.1)</td>
<td>0.03</td>
</tr>
<tr>
<td>Pts with improvement in lob inflammation</td>
<td>54(53%)</td>
<td>34(35%)</td>
<td>1.6(1.1-2.2)</td>
<td>0.006</td>
</tr>
<tr>
<td>Pts with improvement in Steatosis</td>
<td>62(61%)</td>
<td>37(38%)</td>
<td>1.7(1.2-2.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Change in NAS</td>
<td>-1.7(1.8)</td>
<td>-0.7(1.8)</td>
<td>-0.9(-1.3 to -0.5)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Adverse effects

<table>
<thead>
<tr>
<th>Feature</th>
<th>OCA</th>
<th>Placebo</th>
<th>Mean Change OCA vs placebo</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>126</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td>0.16(1.07)</td>
<td>-0.19(0.96)</td>
<td>0.38(0.16-0.60)</td>
<td>0.0009</td>
</tr>
<tr>
<td>LDL-Chol</td>
<td>0.22(0.90)</td>
<td>-0.22(0.80)</td>
<td>0.45(0.26-0.65)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL-Chol</td>
<td>-0.02(0.20)</td>
<td>0.03(0.19)</td>
<td>-0.06(-0.10 to 0.01)</td>
<td>0.01</td>
</tr>
<tr>
<td>Number with intense pruritus</td>
<td>33/141</td>
<td>9/142</td>
<td></td>
<td>p<0.0001</td>
</tr>
</tbody>
</table>
Summary

• OLTx and HCC 2° NAFLD are increasing
• Advanced fibrosis and not NASH is the important prognostic factor
• Lifestyle advice for all patients with NAFLD
• Low threshold for statin therapy
• For patients with NASH + DM
 – Metformin/Liraglutide?
• For patients with NASH only
 – Best evidence for Vitamin E
• ? OCA/Bariatric Surgery
• “Big” Pharma now very interested
Acknowledgements

Prof Quentin Anstee,
Prof Ann Daly
Dr Stuart McPherson,
Dr Helen Reeves,
Prof Alastair Burt,
Prof Mike Trenell
Ms Kate Hallsworth
Mr Christian Thoma

....and all the FLIP /EPoS investigators

EPoS: Elucidating Pathways of Steatohepatitis
Funded by the Horizon 2020 Framework Program of the European Union under Grant Agreement 634413