Acid-Base Problems on the Acute Take

M Waterhouse
Depts of Endocrinology and Acute Medicine
Barts and The London
UK
Not everything that’s sour is sweet..

• How to approach acid-base disorders

• The liver and lactate metabolism

• The RAA system in acid-base disorders
Daily acid generation (burden)

<table>
<thead>
<tr>
<th>Type</th>
<th>Daily amount</th>
<th>Route of elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>15 mol/day</td>
<td>Lungs</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.2 mol/day</td>
<td>Liver, kidneys</td>
</tr>
<tr>
<td>Ketoacids</td>
<td>0.6 mol/day</td>
<td>Many; urine</td>
</tr>
<tr>
<td>FFAs</td>
<td>0.7 mol/day</td>
<td>Many</td>
</tr>
<tr>
<td>Urea</td>
<td>1.1 mol/day</td>
<td>Liver and others</td>
</tr>
</tbody>
</table>

Most disturbances shift towards acidaemia
Henderson Hasselbach Equation

\[
pH = 6.1 + \log_{10} \frac{\text{bicarbonate}}{0.225 \times \text{PCO}_2}
\]

Simplified: \([\text{H}^+]\) is proportional to \(\frac{\text{[CO}_2]}{\text{HCO}_3}\)
An Approach to Acid Base Disorders

- You can’t “over-compensate” a disturbance of pH but you can have a mixed acid-base disorder.
An Approach to Acid Base Disorders

• You can’t “over-compensate” a disturbance of pH but you can have a mixed acid-base disorder

• In a metabolic acidosis, the next step is to calculate the anion gap.
An Approach to Acid Base Disorders

• You can’t “over-compensate” a disturbance of pH but you can have a mixed acid-base disorder.
• In a metabolic acidosis, the next step is to calculate the anion gap.
• In a metabolic alkalosis, the next step is to assess the volume status.
Metabolic Acidosis

• Categorised according to the anion gap

• $AG = (Na^+ + K^+ - Cl^- - HCO_3^-)$

Normally 10-18 mEq/L.

• Albumin has a net negative charge. It is the major unmeasured anion.
The Anion Gap

- **High** anion gap:
 Replacement of HCO_3^- by unmeasured organic acids e.g. lactate, hydroxybutyrate; other organic acids accumulating in uraemia
The Anion Gap

- **High** anion gap:
 Replacement of HCO_3^- by unmeasured organic acids e.g. lactate, hydroxybutyrate; other organic acids accumulating in uraemia

- **Normal** anion gap:
 Loss of alkaline GI secretions: diarrhoea
 Renal tubular defect in HCO_3^- reuptake or H^+ excretion: RTA
Liver and acid base

Conclusion

Metabolism of lactate consumes acid and generates bicarbonate

\[\text{OH}^- + \text{CO}_2 \rightarrow \text{HCO}_3^- \]

\[2\text{CH}_3\text{CHOHCOO}^- + 2\text{H}^+ \rightarrow \text{Glucose} \]

(gluconeogenesis)
LACTIC ACIDOSIS

• Raised anion gap acidosis with plasma lactate > 4 meq/L

• Commonest cause of metabolic acidosis in hospitalised patients

• Type A - due to immediate effects of shock

• Type B - due to impaired cellular metabolism
LACTIC ACIDOSIS

Lactic acidosis \rightarrow blood pH falls

Gluconeogenesis from lactate inhibited \rightarrow Liver cell pH falls
LACTIC ACIDOSIS

(Gluconeogenesis) → Glucose → Pyruvate → (Glycolysis)

Inhibited by metformin at high plasma concentrations

Lactate + 2H⁺
LACTIC ACIDOSIS: treatment

- Treat the cause: restore tissue perfusion
LACTIC ACIDOSIS: treatment

- Treat the cause: restore tissue perfusion
- Bicarbonate Therapy: beware!
LACTIC ACIDOSIS: treatment

• Treat the cause: restore tissue perfusion
• Bicarbonate Therapy: beware!
• Consider in patients with pH less than 7.1 with haemodynamic instability who are adequately ventilated
LACTIC ACIDOSIS: treatment

• Treat the cause: restore tissue perfusion
• Bicarbonate Therapy: beware!
• Consider in patients with pH less than 7.1 with haemodynamic instability who are adequately ventilated
• Recognise that a bolus of Na Bicarbonate will cause:
 - elevation pCO2
 - fall ionised Calcium
 - rapid rise in serum Na and ECF volume
Acid base: case 1

- 45 year old man
- Drowsy, abdominal pain
- Recent alcohol binge
- No history diabetes; no FH diabetes
- Signs of alcoholic liver disease
- Capillary blood glucose 1.5mmol/l
Acid Base Case 1

Investigations: Capillary blood glucose 1.5mmol/l
\[\text{pH} \ 7.2 \]
\[\text{pCO2} \ 3.1 \text{ kPa} \]
\[\text{pO2} \ 13 \text{ kPa} \]
\[\text{HCO3} \ 19 \text{ mmol/L} \]
\[\text{Lactate} \ 1\text{mEq/L} \]
Acid Base Case 1

Investigations: Capillary blood glucose 1.5mmol/l
- pH 7.2
- pCO2 3.1 kPa
- pO2 13 kPa
- HCO3 19 mmol/L
- Lactate 1mmol/L

Anion gap 25 mmol/L
High anion gap acidosis

What is the exogenous acid?
High anion gap acidosis

What is the exogenous acid?

KETONES
Alcoholic Ketoacidosis

- Starved state: promotes ketoacid production
Alcoholic Ketoacidosis

- Starved state: promotes ketoacid production
- Alcohol dehydrogenase requires NAD$\rightarrow$$\rightarrow$NADH
- NAD$\rightarrow$$\rightarrow$NADH also required for hepatic gluconeogenesis
Alcoholic Ketoacidosis

- Starved state: promotes ketoacid production
- Alcohol dehydrogenase requires NAD>>NADH
- NAD>>NADH also required for hepatic gluconeogenesis
- Treatment: iv Dextrose with generous K supplementation. Thiamine.
Acid Base Case 2

- 56 male
- Referred from GP with raised K on routine tests
- No relevant medications
- T2DM retinopathy, sensory neuropathy
Acid Base Case 2

Investigations

Na 140
K 6.5
Creatinine 140
pH 7.2
HCO3 19
Glucose 12
Acid Base Case 2

Investigations

Na 140 mmol/l
K 6.5 mmol/l
Creatinine 140 mmol/l
pH 7.2
HCO3 19 mmol/l
Glucose 12 mmol/l

Anion Gap 10mmol/l
Normal Anion Gap Acidosis

- No GI bicarbonate loss
- Must be a renal tubular defect
Renal tubular acidosis

- Type 1 (distal): can’t maintain a high gradient of H^+ between tubular lumen and blood. Urine pH > 5.3

- Type 2 (proximal). Can’t reabsorb filtered HCO_3^- until blood $HCO_3^- < 12$ mmol/l. Then urine pH falls to < 5.3

- Type 4 - hypoaldosteronism

- All may be hyperchloraemic: Cl reabsorbed instead of HCO_3^-
Type 4 RTA

- Normal 9am cortisol
- Low plasma renin activity
- Low serum aldosterone
- Manifestation of autonomic neuropathy most commonly seen in patients with DM
- Treatment: Fludrocortisone
Metabolic Alkalosis

• Source of excess HCO3 or H+ loss
 +
• Defect in renal excretion of excess bicarbonate

• History
• Intravascular volume status
Metabolic Alkalosis with Volume Contraction

GI:
Loss of acidic secretions from vomiting, NG tube, laxatives

Renal:
Diuretics
Genetic disorders involving renal tubular transport: Bartter’s syndrome, Gitelman’s syndrome
Metabolic Alkalosis without Volume Contraction

Primary mineralocorticoid excess: Conn’s Syn
Mimics of MC excess: liquorice, ectopic ACTH

Administration of NaHCO3

Administration of organic anion salts that are metabolised to bicarbonate eg Na lactate
Acid base: case 3

- 67 year old female
- Bilateral hydronephrosis: iv fluid and JJ stents
- Referred with carpopedal spasm
- BP Normal
- Serum total calcium: 2.36 mmol/L
Acid base: case 3

ABG:
pH 7.75
pCO₂ 6.1 kPa
pO₂ 12.2 kPa
HCO₃ 39 mmol/L
Lactate 4.9 mmol/L (0.6-1.8 mmol/L)
Serum ionised calcium: 0.9 mmol/L (LOW)

Metabolic Alkalosis with high Lactate
Acid base: case 3

ABG:
- pH 7.75
- pCO₂ 6.1 kPa
- pO₂ 12.2 kPa
- HCO₃ 39 mmol/L
- Lactate 4.9 mmol/L (0.6-1.8 mmol/L)
- Serum ionised calcium: 0.9 mmol/L (LOW)

Metabolic Alkalosis with high Lactate
Not Volume contracted normotensive
Acid base: case 3

ABG:
- pH 7.75
- pCO₂ 6.1 kPa
- pO₂ 12.2 kPa
- HCO₃ 39 mmol/L
- Lactate 4.9 mmol/L (0.6-1.8 mmol/L)
- Serum ionised calcium: 0.9 mmol/L (LOW)

Metabolic Alkalosis with high Lactate
Not Volume contracted normotensive
Source of Exogenous Bicarbonate?
Acid base: case 3

- Review of IV chart:
 6 litres of Hartmann’s solution over 48 hours
 ≡ large amount of bicarbonate
Acid-base case 4

- 23 year old female
- Seizures
- 2 day history occasional vomiting
- No medications
- No past medical surgical history
- BP 20mmHg postural drop
Acid-base case 4

• Investigations

Sodium 134 mmol/L
Potassium 2.4 mmol/L
Magnesium 0.5 mmol/l
Bicarbonate 48 mmol/L
Creatinine 45 mmol/L

ABG:
pH 7.55
\(pCO_2 \) 7.9 kPa
Acid-base case 4

• Metabolic Alkalosis
Acid-base case 4

- Metabolic Alkalosis
- Volume contracted
 - so not primary MC excess or exogenous bicarbonate
Acid-base case 4

- Metabolic Alkalosis
- Volume contracted
 - so not primary MC excess or exogenous bicarbonate
- No significant GI H+ loss >> Renal H+ loss
Acid-base case 4

• Metabolic Alkalosis
• Volume contracted
 – so not primary MC excess or exogenous bicarbonate
• No significant GI H+ loss >> Renal H+ loss
• Diuretics?
• Distal renal tubule defect?
What’s in the urine?

- Urine K: high
- Urine Mg: high
- Urine Ca: low

- Diuretic screen: negative
Gitelman’s Syndrome

- Autosomal recessive
- Prevalence 1:40,000
- Volume contraction causes secondary hyperaldosteronism.
- Treatment: Spironolactone, KCl and Mg
Logical approach to acid-base cases

1. Look at the pH
 - If acidaemic: MUST be an acidosis
 - If alkalaemia: MUST be an alkalosis
 - If normal: could be: nothing wrong, compensation

2. Look for pattern of CO$_2$ and HCO$_3^-$:
 - Both low: met acidosis or chronic resp alk
 - Both high: met alkalosis chronic resp acid
 - Divergent: mixed disorder
Logical approach to acid-base cases

3. Metabolic Acidosis
 Anion Gap
 If high: hunt the exogenous acid
 If normal: GI HCO3 loss or RTA

4. Metabolic Alkalosis:
 ?Volume contracted:
 No: MC excess
 Yes: GI H+ loss or renal H+loss
Thank you

Dr Adam Feather
Prof Will Drake
Prof John Monson