Physiological and social predictors of admissions

Glenys Bradbury – Clinical teaching fellow
Graham Baker – CT1 ACCS
Hassan Paraiso – Consultant Acute Physician
Outline

• Background
• Methods
• Results
• Predictor of Admission Score
• Discussion
• Summary
Background: Why?

- Medical Admissions are rising (NCEPOD 2007)
- Healthcare commission 2006:
 - Patients admitted quickly to correct bed
 - Discharged promptly and appropriately
- AMUs help to streamline process (Downing et al 2008)
- NCEPOD report: 5.9% admissions unnecessary
- Elderly most at risk of inappropriate admissions (Cummings et al 2010)
Background: Previous work

• Some work already done
 – Physiological measures (Yong et al 2011)
 – Triaging systems (Wennike et al 2007)
• Majority of existing work focuses on
 – Mortality
 – Preventing adverse outcomes
• Our Markers:
 – Physiological – recommended by NICE 2007
 – Social, mobility, co-morbidities
Methods

- Setting: AMU of a teaching hospital
- Prospective cohort service evaluation
- All attendees ≥ 16 over three consecutive days
- Data obtained from IT system (Oasis®) and case note review
- Admitted defined as LOS ≥ 24 hours
- Demographic, clinical and social factors recorded
- Statistical analysis using Microsoft Excel 2007®
Methods

156 Attenders

12 Excluded

144 Analysed

Planned attendances
Out-patient referrals
Orthopaedic referrals
Incomplete dataset
Notes Inaccessible
Results – Demographic and Clinical characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>68.6</td>
<td>18 – 96</td>
</tr>
<tr>
<td>Gender (Male)</td>
<td>39.6 % (57)</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>86.5 ± 17.9</td>
<td>50 – 140</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td>128.8 ± 22.9</td>
<td>70 – 214</td>
</tr>
<tr>
<td>Hypoxia (Oxygen saturation < 92%, or on oxygen)</td>
<td>Present in 17.4% (25)</td>
<td>77-100%</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>18.6 ± 4.4</td>
<td>12 – 35</td>
</tr>
<tr>
<td>Temperature</td>
<td>36.5 ± 0.8</td>
<td>34.3°C - 39.9°C</td>
</tr>
<tr>
<td>GCS</td>
<td>14.7 ± 1.2</td>
<td>3 – 15</td>
</tr>
<tr>
<td>Discharged</td>
<td>37.5% (54)</td>
<td></td>
</tr>
</tbody>
</table>
Results: Clinical Characteristics

* = <0.05

- Admitted
- Discharged
Results – Co-morbidities

* = <0.05

<table>
<thead>
<tr>
<th>Condition</th>
<th>Admitted</th>
<th>Discharged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Failure</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Liver Failure</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Chronic Respiratory</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Stroke</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Dementia</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Diabetes</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>
Results – Mobility

* = <0.05

Patient Numbers

<table>
<thead>
<tr>
<th>Category</th>
<th>Admitted</th>
<th>Discharged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>Stick</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Frame</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Wheel Chair</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Immobile</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
Results – Residential status

* = <0.05

- **Patient Numbers**

 - **With relatives**: Admitted - 70, Discharged - 60
 - **With carers**: Admitted - 30, Discharged - 20
 - **Residential home**: Admitted - 10, Discharged - 10
 - **Nursing home**: Admitted - 5, Discharged - 5
 - **Sheltered accommodation**: Admitted - 3, Discharged - 3

 *Note: * indicates a significant difference at the p < 0.05 level.
Predictor of Admission Score*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (≥ 65)</td>
<td></td>
</tr>
<tr>
<td>Respiratory Rate (≥20)</td>
<td></td>
</tr>
<tr>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Renal Failure</td>
<td></td>
</tr>
<tr>
<td>Liver Failure</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
</tr>
<tr>
<td>Living alone</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Score 1 for each variable that is present and add total.
Minimum score 0
Maximum score 7

*Predictor of Admission Score Tool by The Dudley Group NHS Foundation Trust is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License](http://creativecommons.org/licenses/by-nc-sa/3.0/).
Predictor of admission score

![Bar chart showing average scores for admitted and discharged patients with a statistical significance of P<0.0001.](image)
Predictor of Admission Score

Percentages of patients admitted or discharged

- Admitted
- Discharged

Predictor of admission Scores (PAS)

The Society for Acute Medicine, Spring Meeting, Dublin 3-4 May 2012
Discussion

• Physiology parameters
 – Poor predictor of admission (Fairclough et al 2009)
 – Primacy of respiratory rate (Subbe et al 2003)
 – Supports original premise

• Older age associated with admission
 – Probable reason physiological scores poorly predictive (Fairclough et al 2009)
Discussion (cont)

• Some co-morbidities associated with admission:
 – Renal failure – possible marker illness?
 – Liver failure, cardiac failure & stroke

• Social parameters
 – Living alone associated with admission
 – Not mobility (Effectiveness of Impact Team?)
 – Not nursing home residents (Safe to discharge?)

• PAS tool
 – Looks promising
 – Need larger trial to demonstrate reproducibility
 – Many factors known prior to admission
 • Could be used for early bed planning and facilitating discharges
Summary

• Physiological scores are a poor predictor of admission

• Social, demographic and co-morbidity factors heavily influence likelihood of admission

• When combined into a simple scoring system this shows considerable promise in predicting likelihood of admission

• Many of these are known before presentation to AMU and could help forward planning
Discharge, Referral and Admission: A Structured Evidence-based Literature Review. eHealth Services Research Group. University of
Tasmania, Australia (on behalf of the Australian Commission on Safety and Quality in Health Care, and the NSW Department of Health).

Downing, Heather, Scott, Christopher, Kelly, Clive.
Evaluation of a dedicated short-stay unit for acute medical admissions. Clinical Medicine, 2008, vol./is. 8/1, 1470-2118

Fairclough E, Cairns E, Hamilton J, Kelly C
Evaluation of a modified early warning system for acute medical admissions and comparison with C-reactive protein/albumin ratio as
a predictor of patient outcome. Clinical medicine (London, England), February 2009, vol./is. 9/1(30), 1470-2118

NCEPOD Report 2007
Emergency Admissions: A journey in the right direction? A report of the National Confidential Enquiry into Patient Outcome and Death

NICE clinical guideline 50 (2007)
Acutely ill patients in hospital: recognition of and response to acute illness in adults in hospital.

Perera YS, Ranasinghe P, Adikari AM, Welivita WD, Perera WM, Wijesundara WM, Karunanayake SA, Constantine GR
The value of the Modified Early Warning Score and biochemical parameters as predictors of patient outcome in acute medical
admissions a prospective study. Acute medicine, 2011, vol./is. 10/3(126-32), 1747-4884

Subbe, C P, Davies, R G, Williams, E, Rutherford, P, Gemmell, L.
Effect of introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in
acute medical admissions. Anaesthesia, 01 August 2003, vol./is. 58/8(797-802), 0003240

4, pp.222 – 232

Wennike N, Williams E, Frost S, Masding M.
16/13(824-827), 09660461

Yong TY, Li JY, Roberts S, Hakendorf P, Ben-Tovim DI, Thompson CH
The selection of acute medical admissions for a short-stay unit. Internal and emergency medicine, August 2011, vol./is. 6/4(321-7), 1970-
9366